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Abstract

We study new solvable few body problems consisting of generalizations
of the Calogero and the Calogero–Marchioro–Wolfes three-body problems,
by introducing non-translationally invariant three-body potentials. After
separating the radial and angular variables by appropriate coordinate
transformations, we provide eigensolutions of the Schrödinger equation with
the corresponding energy spectrum. We found a domain of the coupling
constant for which the irregular solutions are square integrable.

PACS numbers: 02.30.Hq, 03.65.−w, 03.65.Ge

1. Introduction

The study of exactly solvable non-trivial quantum systems of few interacting particles still
commands attention. The early works of Calogero [1, 2], Sutherland [3] and Wolfes [4]
have been followed by the systematic classification of Olshanetsky and Perelomov [5, 6].
Generalizations and new cases have been investigated in recent years. In a non-exhaustive way,
we quote, for instance, the three-body version of the Sutherland problem, with only a three-
body potential, solved by Quesne [7]. By using supersymmetric quantum mechanics, Khare
et al gave examples of algebraically solvable three-body problems of Calogero type in D = 1
dimensional space, with additional translationally invariant two- and/or three-body potentials
[8]. A new integrable model of the Calogero type, with a non-translationally invariant two-
body potential, was worked out in D = 1 by Diaf et al [9] and extended to the D-dimensional
space [10]. A generalization of the latter model in D = 1 was solved by Meljanac et al [11]
by emphasizing the underlying conformal SU(1, 1) symmetry. However, for the three-body
case and D = 1, these authors give only the energy spectrum and the form of the radial
wavefunction.

The purpose of this paper is to investigate again the problem proposed by Meljanac
et al for N = 3 in D = 1. The model may be viewed as a generalization of the three-body
Calogero problem with an additional non-translationally invariant three-body potential. We
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recall here that this model belongs to the class possessing the underlying conformal SU(1, 1)

symmetry. It may also be understood as describing a system of three light interacting particles
of the same mass m in the harmonic field generated by a fourth infinitely heavy particle.
The present work provides the full wavefunction in terms of the radial and two angular
variables together with the corresponding eigenvalues. An emphasis is put on the irregular
solutions stressing the domain of the coupling constants for which the irregular solutions are
physically acceptable. Finally, we also give the exact results of two other generalizations of
the Calogero–Marchioro–Wolfes three-body problem [12].

This paper is organized as follows. In section 2 we solve a generalization of the three-
body Calogero model. In sections 3 and 4 we treat other generalizations of the three-body
Calogero–Marchioro–Wolfes problem. Our conclusions are presented in section 5.

2. A generalization of the three-body Calogero problem

We consider the Hamiltonian

H =
3∑

i=1

(
− ∂2

∂x2
i

+ ω2x2
i

)
+ λ

3∑
i<j

1

(xi − xj )2
+

μ∑3
i=1 x2

i

(1)

or more explicitly

H = − ∂2

∂x2
1

− ∂2

∂x2
2

− ∂2

∂x2
3

+ ω2(x2
1 + x2

2 + x2
3

)
+

μ

x2
1 + x2

2 + x2
3

+ λ

(
1

(x1 − x2)2
+

1

(x1 − x3)2
+

1

(x2 − x3)2

)
. (2)

Here, we use the convention h̄ = 2m = 1. The three light particles interact pairwise by two-
body inverse square potentials, of Calogero type [1], with an additional non-translationally
invariant three-body potential, represented by the term μ

/(
x2

1 + x2
2 + x2

3

)
.

Mathematically, the problem described by the Hamiltonian equation (2) can be considered
as a generalization of the rational integrable A2 model of Olshhanetsky and Perelomov [6].
For this Hamiltonian, Meljanac et al [11] have partially solved the corresponding Schrödinger
equation. However, they were not able to separate the angular variables. Here, we provide the
full solution, namely the spectrum and the associated wavefunction, in terms of the radial and
angular variables. We also note that the model equation (1) may be considered as a three-body
version of the recent model of Diaf et al [9], if we put μ = −λ.

Let us introduce the following coordinate transformation:

t = 1√
3
(x1 + x2 + x3), u = 1√

2
(x1 − x2), v = 1√

6
(x1 + x2 − 2x3). (3)

This transformation is similar to that used in [13] to show the separability of the inverse square
Calogero potential in spherical coordinates. The Hamiltonian reads

H = − ∂2

∂t2
− ∂2

∂u2
− ∂2

∂v2
+ ω2(t2 + u2 + v2) +

9λ(u2 + v2)2

2(u3 − 3uv2)2
+

μ

t2 + u2 + v2
. (4)

Note that this Hamiltonian is not separable in {t, u, v} variables. In order to solve this problem
we introduce the following spherical coordinates:

t = r cos θ, u = r sin θ sin ϕ, v = r sin θ cos ϕ,
(5)

0 � r < ∞, 0 � θ � π, 0 � ϕ � 2π.
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The stationary Schrödinger equation is then written as{
− ∂2

∂r2
− 2

r

∂

∂r
+ ω2r2 +

μ

r2
+

1

r2

[
− ∂2

∂θ2
− cot θ

∂

∂θ

+
1

sin2 θ

(
− ∂2

∂ϕ2
+

9λ

2 sin2(3ϕ)

)]}
�(r, θ, ϕ) = E�(r, θ, ϕ), (6)

where �(r, θ, ϕ) represent the eigensolutions associated with eigenenergy E.
The three-body problem described by this equation (6) may be mapped to the problem of

one particle in a three-dimensional space with a non-central potential of the form

V (r, θ, ϕ) = f1(r) +
f2(ϕ)

r2 sin2 θ
. (7)

It is then clear that the problem becomes separable in the three variables {r, θ, ϕ}. To find the
solution we factorize the wavefunction as follows:

�k,	,n(r, θ, ϕ) = Fk(r)

r


	(θ)√
sin θ

�n(ϕ). (8)

Accordingly, equation (6) separates into the three decoupled differential equations:(
− d2

dϕ2
+

9λ

2 sin2(3ϕ)

)
�n(ϕ) = Bn�n(ϕ), (9)

(
− d2

dθ2
+

(
Bn − 1

4

)
sin2 θ

)

	,n(θ) = D	,n
	,n(θ) (10)

and (
− d2

dr2
+ ω2r2 +

μ + D	,n − 1
4

r2

)
Fk,	,n(r) = Ek,	,nFk,	,n(r). (11)

In the interval 0 � ϕ � 2π the potential involved in equation (9) has a periodicity of π
3 and

possesses singularities at ϕ = k π
3 , k = 0, 1, . . . , 5. This equation has been solved by Calogero

[1]. The interval [0, 2π ] is divided into six sectors [pπ/3, (p + 1)π/3], p = 0, 1, 2, 3, 4, 5.
Each sector corresponds to an ordering between the positions of the three particles [1]. The
equation is first solved in the interval ]0, π/3[ corresponding to x1 > x2 > x3. The extension
to the whole interval [0, 2π ] is made following the prescription given in [1] by using symmetry
arguments according to the statistics obeyed by the particles. In the vicinity of 0 (resp. π

3 ) the
singularity is similar to that of a centrifugal barrier, since the potential behaves like λ/(2ϕ2)

(resp. λ/(2(ϕ − π/3)2)). It can be treated if and only if λ > −1/2, otherwise the operator has
several self-adjoint extensions, each of them may lead to a different spectrum [14, 15]. Trying
to express the solutions of equation (9) in the interval [0, π/3], with Dirichlet conditions at
the boundaries, in terms of orthogonal polynomials, we set

�n(ϕ) = (sin 3ϕ)νfn(z),
(12)

z = cos 3ϕ.

Then, equation (9) turns to a differential equation for fn

(1 − z2)
d2fn(z)

dz2
− (2ν + 1)z

dfn(z)

dz
+

(
Bn

9
− ν − λ − 2ν(ν − 1)z2

2(1 − z2)

)
fn(z) = 0. (13)

This equation has polynomial solutions when both constraints are satisfied:

λ = 2ν(ν − 1), (14)

3



J. Phys. A: Math. Theor. 42 (2009) 065301 A Bachkhaznadji et al

Bn = 9(n + ν)2, n = 0, 1, 2, . . . . (15)

In this case, equation (13) is the differential equation for Gegenbauer polynomials fn(z) =
C(ν)

n (z) [16]. Let us remark that equation (14) has two solutions for ν

ν> = 1
2 (1 +

√
1 + 2λ) = 1

2 + a, (16)

ν< = 1
2 (1 −

√
1 + 2λ) = 1

2 − a, (17)

a = 1
2

√
1 + 2λ. (18)

The two solutions for ν are real and distinct for λ > −1/2, which is the condition for the
existence of physically acceptable solutions near the singularities. Generally, only the regular
solution, corresponding to ν>, is retained. However, it should be noted that with the constraint
of the Dirichlet condition the irregular solution, corresponding to ν<, is also acceptable when
−1/2 < λ < 0 (attractive potentials). If we release the Dirichlet condition and ask only for the
square integrability of the solution, as in [17], then ν< can be retained for −1/2 < λ < 3/2.
For λ = 0, which correspond to ν> = 1 and ν< = 0, we have no interaction between the pairs
of particles. Finally, the (regular) eigensolution reads

�n(ϕ) = (sin 3ϕ)a+ 1
2 C

(a+ 1
2 )

n (cos 3ϕ), 0 � ϕ � π

3
, n = 0, 1, 2, . . . , (19)

and corresponds to the eigenvalue

Bn = 9(n + ν>)2 = 9
(
n + a + 1

2

)2
, n = 0, 1, 2, . . . . (20)

Note that we recover the angular part of the eigensolutions of the three-body Calogero problem
[1]. The second angular equation for the polar angle θ can be written as(

− d2

dθ2
+

(
b2

n − 1
4

)
sin2 θ

− D	,n

)

	,n(θ) = 0, (21)

where the auxiliary constant bn is defined by

b2
n = Bn, bn = ±

√
Bn = ±(

3n + 3a + 3
2

)
. (22)

Due to the fact that bn �= 0, the Hamiltonian of equation (21) is a self-adjoint operator in the
domain

D = {
 ∈ L2[0, π ],
(0) = 
(π) = 0}. (23)

When bn = 0 the Hamiltonian has several self-adjoint extensions, parametrized by a phase
exp(iω), ω ∈ R.

Consider the following ansatz for the function 
:


	,n(θ) = (sin θ)βh	,n(y),
(24)

y = cos θ.

Substituting (24) into (21) allows us to obtain the differential equation for the function h	,n:

(1 − y2)h′′
	,n(y) − (2β + 1)yh′

	,n(y) +

(
D	,n − β +

1 − 4b2
n + 4β(β − 1)y2

4(1 − y2)

)
h	,n(y) = 0,

(25)

where the prime denotes the derivative with respect to y. Physically acceptable solutions
emerge if the constants bn and D	,n satisfy respectively:

4



J. Phys. A: Math. Theor. 42 (2009) 065301 A Bachkhaznadji et al

b2
n = (

β − 1
2

)2
, (26)

D	,n = (	 + β)2, 	 = 0, 1, 2, . . . . (27)

In this case equation (25) becomes

(1 − y2)
d2h	,n(y)

dy2
− (2β + 1)y

dh	,n(y)

dy
+ 	(	 + 2β)h	,n(y) = 0, (28)

which has Gegenbauer polynomials h	,n(y) = C
(β)

	 (y) for solutions. Equation (26) has two
solutions

β> = 1
2 + bn, (29)

β< = 1
2 − bn, (30)

where we have only considered the positive root of equation (22), i.e., bn > 0. 
	,n(θ)

corresponding to β> is the regular solution, whereas the irregular solution corresponds to
β<. The latter is disregarded, as being non-square integrable for most of the n values. To
conclude, the regular eigensolutions and the corresponding eigenvalues for the angular
equation (21) in the interval [0, π ] read, respectively,


	,n(θ) = (sin θ)bn+ 1
2 C

(bn+ 1
2 )

	 (cos θ), 	 = 0, 1, 2, . . . , (31)

D	,n = (
	 + bn + 1

2

)2
, 	 = 0, 1, 2, . . . . (32)

Note that the choice bn = 3n + 3a + 3/2 > 0 implies for every value of n the function 
	,n(θ)

to vanish at the boundaries of the interval [0, π ].
The reduced radial equation reads(

− d2

dr2
+ ω2r2 +

μ + D	,n − 1
4

r2
− Ek,	,n

)
Fk,	,n(r) = 0. (33)

It is solved in the interval 0 � r < ∞ with the condition of square integrability for the
solutions. It implies Fk,	,n(r) → 0 as r → ∞. We have to impose μ + D	,n > 0 in order to
treat the centrifugal barrier in the vicinity of r = 0.

Note that taking μ + D	,n = 0 leads to several self-adjoint extensions parametrized by
a phase. It has been treated for a pure centrifugal barrier in [18, 19], where new bound and
scattering states were pointed out. The case of attractive centrifugal barriers μ + D	,n < 0 has
been investigated in [20], but the energy spectrum is not bounded below. A renormalization
leading to a finite energy ground state was performed in [21] for the one-dimensional case,
then generalized to D dimensions in [22]. This is beyond the scope of our paper.

Taking into account the definition of D	,n, equation (32), we have

μ + D	,n = μ +
(
	 + bn + 1

2

)2 = μ + (	 + 3n + 3a + 2)2 > 0, ∀ n � 0, ∀ 	 � 0.

(34)

The quantity μ + D	,n is minimal for n = 0, 	 = 0 and a = 0 ( recall that a � 0, see (18)). It
put restraint on μ to satisfy μ > −4. We introduce the auxiliary parameter α	,n defined by

α2
	,n = μ + D	,n, α	,n = √

μ + D	,n. (35)

To solve the radial equation (33) we set

Fk,	,n(r) = rα	,n+ 1
2 exp

(
−ωr2

2

)
gk,	,n(s), s = ωr2. (36)

5
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Inserting this ansatz into equation (33), we obtain the differential equation for gk,	,n:

s
d2gk,	,n(s)

ds2
+ (α	,n + 1 − s)

dgk,	,n(s)

ds
+

(
Ek,	,n

4ω
− 1

2
− α	,n

2

)
gk,	,n(s) = 0. (37)

This equation is nothing but the differential equation of the generalized Laguerre polynomials
L

(α	,n)

k (s) [16], if the term
(Ek,	,n

4ω
− 1

2 − α	,n

2

)
is equal to a non-negative integer value k, i.e.,(

Ek,	,n

4ω
− 1

2
− α	,n

2

)
= k, k = 0, 1, 2, . . . . (38)

The regular solutions of the reduced radial equation are written as

Fk,	,n(r) = rα	,n+ 1
2 exp

(
−ωr2

2

)
L

(α	,n)

k (ωr2), k = 0, 1, 2, . . . , (39)

and are associated with the eigenvalues

Ek,	,n = 2ω(2k + α	,n + 1), k = 0, 1, 2, . . . . (40)

The choice of the positive root α	,n (35) implies Fk,	,n(r) to vanish at the origin. The Gaussian
term in equation (39) ensures the square integrability of the solutions. The negative root
would lead to non-square integrable solutions for high values of 	. Taking into account all
information, we conclude the physically acceptable solutions of the Schrödinger equation (6)
to be given by

�k,	,n(r, θ, ϕ) = r
√

μ+(	+3n+3a+2)2− 1
2 e− ωr2

2 L
(
√

μ+(	+3n+3a+2)2)

k (ωr2)

× (sin θ)3n+3a+ 3
2 C

(3n+3a+2)
	 (cos θ)(sin 3ϕ)a+ 1

2 C
(a+ 1

2 )
n (cos 3ϕ),

k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . ,

0 � ϕ � π

3
, a = 1

2

√
1 + 2λ, (41)

with the prescription [1]

�k,	,n

(
r, θ, ϕ + 1

3pπ
) = (−1)pn(−1)p(1−ε)/2�k,	,n(r, θ, ϕ),

(42)
0 � ϕ � π

3
, p = 1, 2, 3, 4, 5.

By using the parity properties of the Gegenbauer polynomials [23], we can write an alternative
compact form of the solution valid in the whole interval [0, 2π ]:

�k,	,n(r, θ, ϕ) = r
√

μ+(	+3n+3a+2)2− 1
2 e− ωr2

2 L
(
√

μ+(	+3n+3a+2)2)

k (ωr2)

× (sin θ)3n+3a+ 3
2 C

(3n+3a+2)
	 (cos θ)

× sgn(sin(3ϕ))[(1−ε)/2]|sin 3ϕ|a+ 1
2 C

(a+ 1
2 )

n (cos 3ϕ), (43)

with ε = 1 for bosons and −1 for fermions in both equations (42) and (43). We recall
that sgn(x) = x/|x| denotes the sign of x �= 0. For the Bose statistics, the extension (43) is
possible, provided that no δ distribution occurs when the second derivative of the wavefunction
with respect to ϕ is applied at the boundaries, between two adjacent sectors. For example, for
ϕ = π/3 and n = 0 , a δ distribution occurs for a = 1/2 (i.e. ν> = 1, implying λ = 0). It
is due to the presence of |sin 3ϕ| in (43). As a consequence, the symmetrical solutions to the
pure harmonic oscillator (λ = μ = 0) are not recovered.

The normalization constants Nk,	,n are calculated from∫ +∞

0
r2 dr

∫ π

0
sin θ dθ

∫ π
3

0
dϕ �k,	,n(r, θ, ϕ)�k′,l′,n′(r, θ, ϕ) = δk,k′δ	,	′δn,n′Nk,	,n, (44)

6



J. Phys. A: Math. Theor. 42 (2009) 065301 A Bachkhaznadji et al

where use is made of the orthogonality properties of Gegenbauer and Laguerre polynomials
[16]. The integration yields

Nk,	,n = 1

ωμ+(	+3n+3a+2)2+1

π2

3
4−(4a+3n+2) �(n + 2a + 1)

n!(n + a + 1/2)�(a + 1/2)2

× �(	 + 6n + 6a + 4)�[μ + (	 + 3n + 3a + 2)2 + k + 1]

	!k!(	 + 3n + 3a + 2)�(3n + 3a + 2)2
. (45)

The full expression of the eigenenergies is expressed by

Ek,	,n ≡ Ek,	+3n = 2ω
(
2k +

√
μ + (	 + 3n + 3a + 2)2 + 1

)
,

(46)
k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

We recover the expression of the spectrum obtained by Meljanac et al [11]. This can be
checked by taking equation (113) of [11], by rescaling ω by 2ω, replacing ν by a + 1/2, n by
	 and m by n.

Let us now consider the irregular solutions corresponding to ν< = 1/2 − a. We have
to replace a by −a in all equations, from equation (20) to equation (46). Recall that for
−1/2 < λ < 3/2, these irregular solutions are square integrable, as seen before. It has to be
added that, for Fermi statistics, a δ pathology occurs in (43), for a = 1/2, which is equivalent
to ν< = 0 (λ = 0). Moreover, the requirement of self-adjointness of the Sturm–Liouville
operator (21) imposes us to disregard the case λ = 0, in order to ensure bn �= 0.

We next examine to what extent the definition of the function 
	,n(θ), equation (24),
leads to square integrable solutions for every value of n, where

β = 1
2 + bn = 3n + 2 − 3a

(
a = 1

2

√
1 + 2λ

)
. (47)

Since we have

(∀ n � 0) bn = 3n + 3
2 − 3a � 3

2 − 3a, (48)

the function 
	,n(θ), equation (31), leads to square integrable solutions for every value of
n if a < 5/6. The latter inequality happens for λ < 8/9. As far as the radial equation is
concerned, the constraint μ + D	,n > 0 allows us to treat the centrifugal barrier in the vicinity
of r = 0. This is satisfied for every {	, n} such that

μ + (2 − 3a)2 > 0. (49)

This condition defines a domain of the acceptable values of μ depending on the values of
λ ∈ ]−1/2, 0[∪]0, 8/9[. Under such conditions, the radial solutions, equation (39), are square
integrable, because we have α	,n > 0.

Finally, note that the Gegenbauer polynomials in (41), (recall that a is replaced by −a)
constitute a basis. The normalization constants (45) are finite in the domain of the values
of λ ∈ ]−1/2, 0[∪]0, 8/9[. For a = 2/3 (λ = 7/18) and n = 0, we are faced to the
Gegenbauer polynomials of the type C0

	 (cos θ), which are well defined and lead to other finite
normalization constants [23]. For λ ∈ ]−1/2, 0[, the irregular square integrable solutions
vanish at the boundaries ϕ = pπ/3, p = 0, 1, . . . , 5.

The variables (r, θ, ϕ) are linked to the coordinates of the three particles x1, x2 and x3 by

r2 = t2 + u2 + v2 = x2
1 + x2

2 + x2
3 , (50)

θ = arccos

(
t

r

)
= arccos

⎛
⎝ x1 + x2 + x3√

3
(
x2

1 + x2
2 + x2

3

)
⎞
⎠ 0 � θ � π, (51)

7
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ϕ = arctan
(u

v

)
= arctan

( √
3(x1 − x2)

x1 + x2 − 2x3

)
0 � ϕ � π

3
. (52)

Following [1] we make here two remarks. For identical particles, the triplet k, l, n determines a
symmetrized unique wavefunction. Once it is determined in ϕ’s angular sector, 0 � ϕ � π/3,
it is extended to the [0, 2π ] interval by considering the symmetry property implied by the
statistics according to equation (42). In the case of distinguishable particles, we define, in
each sector p π

3 � ϕ � (p + 1) π
3 , p fixed (p = 0, 1, 2, 3, 4, 5), a wavefunction �

(p)

k,	,n by

equations (41) and (42). In the remaining five sectors, �
(p)

k,	,n can be set to zero. As a
consequence, we have six different states for each triplet k, l, n [1]. The degeneracy of each
energy level Ek,N , where N = 	 + 3n, is equal to the integer part of 1

3 (N + 3) for identical
particles. This degeneracy is multiplied by six in the case of distinguishable particles. Note
that the spectrum for irregular solutions has eigenvalues lower than those corresponding to the
regular solutions. This spectrum is given by

E
(<)
k,	,n = 2ω

(
2k +

√
μ + (	 + 3n − 3a + 2)2 + 1

)
,

k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

3. A generalization of the three-body Calogero–Marchioro–Wolfes (CMW) problem

We now consider the following Hamiltonian:

H =
3∑

i=1

(
− ∂2

∂x2
i

+ ω2x2
i

)
+ g

3∑
i<j

1

(xi − xj )2

+
μ∑3

i=1 x2
i

+ 3f

3∑
i<ji,j �=k

1

(xi + xj − 2xk)2
. (53)

This Hamiltonian is a generalization of the three-body problem studied by Wolfes [4]. For
μ = 0, the model of equation (53) corresponds to the rational G2 integrable model [6]. Recall
that for μ = 0 and ω = 0, the Hamiltonian (53) becomes the scattering three-body problem
of Calogero and Marchioro [12].

Introducing the coordinate transformation as defined in (3), the Schrödinger equation
reads[

− ∂2

∂t2
− ∂2

∂u2
− ∂2

∂v2
+ ω2(t2 + u2 + v2) +

μ

t2 + u2 + v2

+
9g(u2 + v2)2

2(u3 − 3uv2)2
+

9f (u2 + v2)2

2(v3 − 3vu2)2
− E

]
�(t, u, v) = 0. (54)

By using the spherical coordinates, equations (5), it becomes{
− ∂2

∂r2
− 2

r

∂

∂r
+ ω2r2 +

μ

r2
+

1

r2

[
− ∂2

∂θ2
− cot θ

∂

∂θ

+
1

sin2 θ

(
− ∂2

∂ϕ2
+

9g

2 sin2(3ϕ)
+

9f

2 cos2(3ϕ)

)]}
�(r, θ, ϕ) = E�(r, θ, ϕ).

(55)

Assuming further the transformation (8) of the wavefunction, we end up with three decoupled
differential equations(

− d2

dϕ2
+

9g

2 sin2(3ϕ)
+

9f

2 cos2(3ϕ)

)
�n(ϕ) = B̃n�n(ϕ), (56)

8
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− d2

dθ2
+

B̃n − 1
4

sin2 θ

)

	,n(θ) = D̃	,n
	,n(θ) (57)

and (
− d2

dr2
+ ω2r2 +

μ + D̃	,n − 1
4

r2

)
Fk,	,n(r) = Ek,	,nFk,	,n(r). (58)

The eigenvalue equation (56) is identical to that studied in [4, 12]. In the interval 0 � ϕ � 2π

the potential in equation (56) has singularities for ϕ = k π
6 , k = 0, 1, 2, . . . , 11. Clearly, it

defines 12 sectors: q π
6 < ϕ < (q + 1) π

6 , q = 0, 1, 2, . . . , 11. In each sector, in addition to
the defined order between the positions of the three particles, there is now a ‘polarization’
between the particles in the sense that the middle particle is closer to that on its right or on its
left or vice versa [4, 12]. This can be seen from the following equations:

x1 − x2 =
√

2r sin θ sin ϕ,

x1 − x3 =
√

2r sin θ sin
(
ϕ +

π

3

)
, (59)

x2 − x3 =
√

2r sin θ sin

(
ϕ +

2π

3

)
and from the following set:

x1 + x2 − 2x3 ≡ (x1 − x3) + (x2 − x3) =
√

6r sin θ cos ϕ,

x1 + x3 − 2x2 ≡ (x1 − x2) + (x3 − x2) =
√

6r sin θ cos

(
ϕ − 2π

3

)
, (60)

x2 + x3 − 2x1 ≡ (x2 − x1) + (x3 − x1) =
√

6r sin θ cos

(
ϕ − 4π

3

)
.

Henceforth, we restrict our study to the sector q = 0, 0 < ϕ < π/6, which corresponds to
the configuration x1 > x2 > x3, x1 − x2 < x2 − x3. The extension to other sectors, in the
case of distinguishable or indistinguishable particles, has been discussed in detail in [4, 12]
and it is not reported here. We then consider equation (56) in the interval 0 � ϕ � π

6 with
the condition that g > − 1

2 and f > − 1
2 to ensure the self-adjointness of the operator. This

equation has already been solved by Wolfes in [4]. The regular eigensolutions, which satisfy
the Dirichlet conditions at the boundaries of the interval, are

�n(ϕ) = (sin 3ϕ)a+ 1
2 (cos 3ϕ)b+ 1

2 P (a,b)
n (cos 6ϕ), (61)

0 � ϕ � π

6
, n = 0, 1, 2, . . . ,

(62)
a = 1

2

√
1 + 2g, b = 1

2

√
1 + 2f .

where P (a,b)
n (z) denotes the Jacobi polynomials [16]. The corresponding eigenvalues read

B̃n = 9 (2n + a + b + 1)2 , n = 0, 1, 2, . . . . (63)

The second angular equation for the angle θ takes the form(
− d2

dθ2
+

(
b̃2

n − 1
4

)
sin2 θ

− D̃	,n

)

	,n(θ) = 0 (64)

with b̃n defined by

B̃n = b̃2
n, b̃n =

√
B̃n = 3(2n + a + b + 1). (65)

9
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Equation (64) has the same structure as equation (21). Then, physically acceptable solutions
in the interval 0 � θ � π are written as


	,n(θ) = (sin θ)b̃n+ 1
2 C

(b̃n+ 1
2 )

	 (cos θ), 	 = 0, 1, 2, . . . , (66)

D̃	,n = (
	 + b̃n + 1

2

)2
, 	 = 0, 1, 2, . . . , (67)

with b̃n given in (65).
Finally, the radial equation is identical to equation (33), D	,n being replaced by D̃	,n. The

condition for treating the centrifugal barrier,

μ + D̃	,n = μ +
(
	 + 6n + 3a + 3b + 7

2

)2
> 0, (68)

has to be verified ∀ n � 0, and ∀ 	 � 0. The minimal value of the squared term is 49/4. It
implies that (68) is valid for μ > − 49

4 .

Introducing the constant α̃	,n:

α̃2
	,n = μ + D̃	,n, α̃	,n =

√
μ + D̃	,n, (69)

and, in analogy with equations (39) and (40), the eigensolutions and the eigenvalues of the
radial equation (58) read, respectively,

Fk,	,n(r) = rα̃	,n+ 1
2 exp

(
−ωr2

2

)
L

(α̃	,n)

k (ωr2), k = 0, 1, 2, . . . , (70)

Ek,	,n = 2ω(2k + α̃	,n + 1), k = 0, 1, 2, . . . . (71)

Here L
(α̃	,n)

k denote the generalized Laguerre polynomials. The regular solutions of the
generalized Calogero–Marchioro–Wolfes three-body problem are

�k,	,n = r
√

μ+(	+6n+3a+3b+ 7
2 )2− 1

2 e− ωr2

2 L
(
√

μ+(	+6n+3a+3b+ 7
2 )2)

k (ωr2)

× (sin θ)6n+3a+3b+3C
(6n+3a+3b+ 7

2 )

	 (cos θ)

× (sin 3ϕ)a+ 1
2 (cos 3ϕ)b+ 1

2 P (a,b)
n (cos 6ϕ),

k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . ,

0 � ϕ � π

6
, a = 1

2

√
1 + 2g, b = 1

2

√
1 + 2f . (72)

From the relation∫ +∞

0
r2 dr

∫ π

0
sin θ dθ

∫ π
6

0
dϕ �k,	,n(r, θ, ϕ)�k′,	′,n′(r, θ, ϕ) = δk,k′δ	,	′δn,n′Nk,	,n, (73)

where use is made of the orthogonality properties of the Jacobi, Gegenbauer and Laguerre
polynomials, the normalization constants can be calculated. They are not given explicitly
here. The eigenenergies of equation (55) are given by

Ek,	,n ≡ Ek,l+6n = 2ω
(
2k +

√
μ +

(
	 + 6n + 3a + 3b + 7

2

)2
+ 1

)
,

(74)
k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . .

The degeneracy of the spectrum (74) is equal to the integer part of 1
6 (N + 6) where N is defined

by N ≡ l + 6n, for identical particles (Bose or Fermi statistics). The degeneracy is multiplied
by 12 for distinguishable particles (Boltzmann statistics). Note that when μ = 0, the spectrum
becomes linear in the quantum numbers and is equal to

Ek,	,n(μ = 0) ≡ E2k+	+6n = 2ω
(
2k + 	 + 6n + 3a + 3b + 9

2

)
. (75)

In this case the degeneracy is equal to the integer part of 1
2 (N ′ + 2) where N ′ = 2k + 	 + 6n

(identical particles).
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4. Another generalization

We consider next the following Hamiltonian:

H =
3∑

i=1

(
− ∂2

∂x2
i

+ ω2x2
i

)
+ g

3∑
i<j

1

(xi − xj )2
+

μ∑3
i=1 x2

i

+ 3f

3∑
i<j i,j �=k

1

(xi + xj − 2xk)2
+

3β(∑3
i=1 xi

)2 . (76)

For β = 0, we recover the previously studied problem. The Hamiltonian equation (76) may
be considered as another generalization of the three-body problem of Calogero–Marchioro–
Wolfes [4, 12] (for μ = 0), as well as a generalization of the three-body problem studied in
[11]. Finally, it could be another three-body version of the two-body problem treated in [9]
(when μ = −g).

In the coordinates defined by equation (3), this Hamiltonian reads

H = − ∂2

∂t2
− ∂2

∂u2
− ∂2

∂v2
+ ω2(t2 + u2 + v2) +

μ

t2 + u2 + v2

+
9g(u2 + v2)2

2(u3 − 3uv2)2
+

9f (u2 + v2)2

2(v3 − 3vu2)2
+

β

t2
. (77)

In spherical coordinates, equation (5), the potential is written as

V (r, θ, ϕ) = ω2r2 +
μ

r2
+

1

r2

[
1

sin2 θ

(
9g

2 sin2(3ϕ)
+

9f

2 cos2(3ϕ)

)
+

β

cos2 θ

]
. (78)

This ‘non-central’ potential is separable in the coordinates {r, θ, ϕ} because it has the general
form

V (r, θ, ϕ) = f (r) +
1

r2
g(θ) +

1

r2 sin2 θ
h(ϕ). (79)

Using the factorization of equation (8) for the wavefunction, the Schrödinger equation splits
into three differential equations: the first one,(

− d2

dϕ2
+

9g

2 sin2(3ϕ)
+

9f

2 cos2(3ϕ)

)
�n(ϕ) = b2

n�(ϕ), (80)

is identical to equation (56). Therefore, the solutions are given by equations (61)–(63).
The second one, for the angle θ ,(

− d2

dθ2
+

(
b2

n − 1
4

)
sin2 θ

+
β

cos2 θ

)

	,n(θ) = C	,n
	,n(θ), (81)

will be solved below. The third one, the radial equation,(
− d2

dr2
+ ω2r2 +

μ + C	,n − 1
4

r2

)
Fk,	,n(r) = Ek,	,nFk,	,n(r), (82)

has already been solved, and the solutions are given by equations (69)–(71), where we replace
D̃	,n by C	,n.

To solve equation (81) in the interval 0 � θ � π , we first note that equation (81) has
three singularities for θ equal to k π

2 , k = 0, 1, 2. This separates the interval [0, π ] into two
equal length intervals, namely

0 < θ <
π

2
with

√
3r cos θ = x1 + x2 + x3 > 0, (83)

11
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π

2
< θ < π with

√
3r cos θ = x1 + x2 + x3 < 0, (84)

corresponding to a positive (resp. negative) value of the variable t. This new constraint on
the configuration space is added to the two constraints (ordering and polarization’ between
particles) found in the previously studied three-body generalizations.

We first solve equation (81) in [0, π/2] with Dirichlet conditions. The coupling constant
β has to satisfy β > − 1

4 to ensure the self-adjointness of the operator. We take the following
ansatz for the function 
	,n:


	,n(θ) = (sin θ)ν(cos θ)ρh	,n(z),
(85)

z = cos 2θ.

Inserting (85) into (81) and assuming that the constants bn and β satisfy

b2
n = (

ν − 1
2

)2
(86)

β = ρ(ρ − 1), (87)

we obtain the differential equation for h	,n(z). It reads

(1 − z2)h′′
	,n(z) + (ρ − ν − (ρ + ν + 1)z)h′

	,n(z) +

(
C	,n

4
− (ν + ρ)2

4

)
h	,n(z) = 0. (88)

Equation (88) has physically acceptable solutions if and only if

C	,n = (2l + ρ + ν)2, 	 = 0, 1, 2, . . . . (89)

In this case, h	,n(z) are Jacobi polynomials, namely h	,n(z) = P
(ν− 1

2 ,ρ− 1
2 )

	 (cos 2θ) . Equations
(86) and (87) have two solutions for respectively ν and ρ

ν> = 1
2 + bn, (90)

ν< = 1
2 − bn, (91)

and

ρ> = 1
2 (1 +

√
1 + 4β), (92)

ρ< = 1
2 (1 −

√
1 + 4β). (93)

The physically acceptable solutions of equation (81) are the regular ones, which correspond
to ν = ν> and ρ = ρ>, respectively,



(+)
	,n(θ) = (sin θ)bn+ 1

2 (cos θ)c+ 1
2 P

(bn,c)
	 (cos 2θ), (94)

0 � θ � π

2
, 	 = 0, 1, 2, . . . , c = 1

2

√
1 + 4β. (95)

The index + means that the t coordinate is positive. The solutions in the interval π
2 � θ � π

are obtained by setting


	,n(θ) = (sin θ)ν (−cos θ)ρh	,n(z), z = cos 2θ, (96)

which gives



(−)
	,n (θ) = (sin θ)bn+ 1

2 (−cos θ)c+ 1
2 P

(bn,c)
	 (cos 2θ),

(97)π

2
� θ � π, 	 = 0, 1, 2, . . . .
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The index − means that the t coordinate is negative. Note that in the interval [π/2, π ] we
have −cos θ � 0 and sin θ � 0 so that the real power of these positive values is defined.

In both cases, the eigenvalues C	,n of equation (81) are given by

C	,n = (2	 + bn + c + 1)2, 	 = 0, 1, 2, . . . . (98)

The regular solutions of the Schrödinger equation for the Hamiltonian (76) are written as

�k,	,n = r
√

μ+(2	+6n+3a+3b+c+4)2− 1
2 e− ωr2

2 L
(
√

μ+(2	+6n+3a+3b+c+4)2)

k (ωr2)

× (sin θ)6n+3a+3b+3(ε cos θ)c+ 1
2 P (6n+3a+3b+3,c)

n (cos 2θ)

× (sin 3ϕ)a+ 1
2 (cos 3ϕ)b+ 1

2 P
(a,b)
	 (cos 6ϕ),

k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . , (99)

with

a = 1

2

√
1 + 2g, b = 1

2

√
1 + 2f , c = 1

2

√
1 + 4β,

0 � ϕ � π

6
,

1 − ε

2

π

2
� θ � 3 − ε

2

π

2
, ε = ±1.

The integral∫ +∞

0
r2 dr

∫ (3−ε)π/4

(1−ε)π/4
sin θ dθ

∫ π
6

0
dϕ �k,	,n(r, θ, ϕ)�k′,l′,n′(r, θ, ϕ) = δk,k′δ	,	′δn,n′Nk,	,n

(100)

yields the normalization constants Nk,	,n. They are not explicitly calculated here.
The eigenenergies are given by

Ek,	,n ≡ Ek,2	+6n = 2ω
(
2k +

√
μ + (2	 + 6n + 3a + 3b + c + 4)2 + 1

)
,

k = 0, 1, 2, . . . , 	 = 0, 1, 2, . . . , n = 0, 1, 2, . . . . (101)

5. Conclusions

In this paper we have considered a generalization of the one-dimensional three-body Calogero
problem with a non-translationally invariant three-body potential. The latter problem has
already been studied by Meljanac et al. These authors have given only the energy spectrum
and the radial part of the wavefunction. In this paper, we have succeeded in separating the
three variables, associated with the 3 degrees of freedom, namely the radial r and both angular
variables {θ, ϕ}. We have exhibited the full wavefunction, the solution of the Schrödinger
equation, in terms of r, θ, ϕ, together with the corresponding energy spectrum. We have
obtained a compact expression for the wavefunction in the whole interval [0, 2π ] for the
angular variable ϕ in the cases of bosons and fermions. We have found a domain of the
coupling constants for which the irregular solutions, being square integrable, are physically
acceptable. Finally, we also give the exact results of two other generalizations of the Calogero–
Marchioro–Wolfes three-body problem, with two additive non-translationally invariant three-
body potentials. Other solvable few body problems may be obtained by replacing the confining
harmonic term in the Hamiltonians, considered in this paper, by an attractive potential of the

Coulomb type −α/

√∑3
i=1 x2

i , α > 0, giving rise to both a discrete and a continuous spectrum.
This situation is analogous to that considered in [8] for a translationally invariant Coulomb-type
potential.
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[23] Erdélyi A, Magnus W, Oberhettinger F and Tricomi F G 1953 Higher Transcendental Functions vol 2 (New

York: McGraw-Hill)

14

http://dx.doi.org/10.1063/1.1664820
http://dx.doi.org/10.1063/1.1665604
http://dx.doi.org/10.1063/1.1665584
http://dx.doi.org/10.1103/PhysRevA.4.2019
http://dx.doi.org/10.1063/1.1666826
http://dx.doi.org/10.1016/0370-1573(81)90023-5
http://dx.doi.org/10.1016/0370-1573(83)90018-2
http://dx.doi.org/10.1103/PhysRevA.55.3931
http://dx.doi.org/10.1088/0305-4470/27/6/041
http://dx.doi.org/10.1088/0305-4470/39/23/009
http://dx.doi.org/10.1088/1751-8113/40/30/012
http://dx.doi.org/10.1140/epjc/s10052-006-0163-9
http://dx.doi.org/10.1063/1.1666827
http://dx.doi.org/10.1063/1.2345472
http://dx.doi.org/10.1103/PhysRevA.61.066101
http://dx.doi.org/10.1088/0305-4470/25/23/013
http://dx.doi.org/10.1016/S0550-3213(03)00189-5
http://dx.doi.org/10.1016/j.physleta.2008.01.008
http://dx.doi.org/10.1103/PhysRev.80.797
http://dx.doi.org/10.1103/PhysRevD.48.5940
http://dx.doi.org/10.1103/PhysRevLett.85.1590

	1. Introduction
	2. A generalization of the three-body Calogero problem
	3. A generalization of the three-body Calogero--Marchioro--Wolfes (CMW) problem
	4. Another generalization
	5. Conclusions
	Acknowledgment
	References

